1. Write the mapping notation to describe how the graphs of the following functions can be obtained from the graph of $y=f(x)$.
a) $y-3=f(5 x)$
b) $2 y-6=f(4(x+1)$
c) $y=f(3 x+6)+1$
2. Write the equation of the transformation in the form $y=a f(b(x-h))+k$ after the transformations described.
a) $\quad y=g(x)$ is translated 4 units down, 3 units to the left and horizontally stretched by a factor of 5 .
b) $\quad y=g(x)$ is translated 2 units up, 5 units to the right, reflected in the x-axis and vertically stretched by a factor of 3 .
3. The mapping rule $(x, y) \rightarrow(2 x-1, y+3)$ is applied to the function $y=f(x)$. What is the equation of the resulting function?
A) $y=f(2(x-1))+3$
B) $y=f(2(x+1))-3$
C) $y=f\left(\frac{1}{2}(x-1)\right)-3$
D) $y=f\left(\frac{1}{2}(x+1)\right)+3$
4. The domain of $y=f(x)$ is $\{x \mid-4 \leq x \leq 8, x \in R\}$ and the range is $\{y \mid-6 \leq x \leq 12, x \in R\}$. What are the domain and range of $g(x)=\frac{1}{3} g(2 x)$?
5. The point $(-4,10)$ lies on the graph of $f(x)$. What is the image point on the graph of $y=-3 f(2 x-6)+1$?
6. Consider the function $f(x)=(x+4)(x-5)$. What are the zeros of the function if the graph is transformed by a horizontal stretch factor of 3 and reflected over the y-axis?
A) $(-12,0)$ and $(15,0)$
B) $\left(-\frac{4}{3}, 0\right)$ and $\left(\frac{5}{3}, 0\right)$
C) $(12,0)$ and $(-15,0)$
D) $\left(\frac{4}{3}, 0\right)$ and $\left(-\frac{5}{3}, 0\right)$
7. If the function $y=f(x)$ is horizontally stretched by a factor of $\frac{1}{4}$ and translated 5 units to the left and 1 unit downward, what is the new transformed equation?
A) $y=f\left(\frac{1}{4}(x-5)\right)-1$
B) $y=f\left(\frac{1}{4}(x+5)\right)+1$
C) $y=f(4(x-5))-1$
D) $y=f(4(x+5))-1$
8. What is the horizontal stretch factor of $\frac{1}{2} y=f(-5 x)$?
A) -5
B) $-\frac{1}{5}$
C) $\frac{1}{5}$
D) 5
9. What is the horizontal translation of the transformed function $y=2 f(-3 x+6)+1$?
A) 6 units left
B) 2 units left
C) 2 units right
D) 6 units right
10. What is the vertical translation of the transformed function $3 y-6=f(x+6)$?
A) 6 units up
B) 6 units down
C) 2 units up
D) 2 units down
11. The point (a, b) is on the graph of $y=f(x)$. What are the coordinates of the image of this point on the graph of $y+b=f(x+1)$?
A) $(a-1,2 b)$
B) $(a+1,2 b)$
C) $(a-1,0)$
D) $(a+1,0)$
12. Which mapping rule would map the function $y=f(x)$ onto the function $y=f\left(-\frac{1}{3} x+3\right)$?
A) $(x, y) \rightarrow(-3 x+1, y)$
B) $(x, y) \rightarrow(-3 x+9, y)$
C) $(x, y) \rightarrow\left(-\frac{1}{3} x+1, y\right)$
D) $(x, y) \rightarrow\left(-\frac{1}{3} x+9, y\right)$
13. The transformation $y=-3 f(4(x-1))+2$ is best described as:
A) Reflection about the x - axis; a vertical stretch factor of 3 and a horizontal stretch factor of 4 ; translation 1 unit to the left and 2 units up.
B) Reflection about the x - axis; a vertical stretch factor of 3 and a horizontal stretch factor of $\frac{1}{4}$; translation 1 unit to the right and 2 units up.
C) Reflections about the y - axis; a vertical stretch factor of 3 and a horizontal stretch factor of $\frac{1}{4}$; translation 1 unit to the right and 2 units up.
D) Reflections about the y - axis; a vertical stretch factor of 3 and a horizontal stretch factor of 4 ; translation 1 unit to the right and 2 units up.
14. Consider the graph of $y=f(x)$.

Use the function $y-5=f\left(-\frac{1}{2}(x+3)\right)$ to state the coordinates of the image points $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime}.

15. Determine the equation of the transformed graph $y=a f(b(x-h))+k$ given the graph of $y=f(x)$.

16. What is the inverse of $y=2 x^{2}-8$.
A) $y=\frac{x^{2}+8}{2}$
B) $y= \pm \sqrt{\frac{x+8}{2}}$
C) $y= \pm \sqrt{x+4}$
D) $y=8 \pm \sqrt{\frac{x}{2}}$
17. Algebraically determine the equation of the inverse of $f(x)=2 x^{2}+8 x+1$. Identify a restricted domain for which the function has an inverse that is also a function.
18. Given the graph of the function $y=f(x)$ below, sketch the inverse graph of $y=3 f(-2(x-1))+1$

