1. Which function best represents the graph shown below?
A) $y=\sqrt{-x}-3$
B) $y=\sqrt{-x}+3$
C) $y=-\sqrt{x}-3$
D) $y=-\sqrt{x}+3$

2. The graph of the function $y=\sqrt{x}$ is stretched horizontally by a factor of 3 and translated 4 units left. What is the domain of the transformed function?
A) $x \mid x \geq-4, x \varepsilon R$
B) $x \left\lvert\, x \geq-\frac{4}{3}\right., x \varepsilon R$
C) $x \mid x \leq-3, x \varepsilon R$
D) $x \mid x \leq-4, x \varepsilon R$
3. If $f(x)=3 x+1$, which point is on the graph of $y=\sqrt{f(x)}$?
A) $(0,0)$
B) $(0,1)$
C) $(1,0)$
D) $(1,1)$
4. Which function has a range of $y \mid y \geq 0, y \varepsilon R$?
A) $y=-\sqrt{x-5}$
B) $y=\sqrt{x}-5$
C) $y=\sqrt{-(x+5)}$
D) $y=\sqrt{x}+5$
5. Write the radical function that results from applying each set of transformations to the graph $y=\sqrt{x}$.
(A) vertical stretch by a factor of 3, reflection in x-axis, a translation of 4 units right and 2 units down.
(B) vertical stretch by a factor of 3 , horizontal stretch by a factor of $\frac{1}{2}$, reflection in x and y axis, translation 6 units to the left.
6. State the mapping rule and sketch the graph of $y=-4 \sqrt{x+3}-2$.
7. Sate all of the invariant points for the graph of $f(x)=6 x^{2}-x$ and $y=\sqrt{f(x)}$?
8. Given the graph of $y=f(x)$, sketch the graph of $y=\sqrt{f(x)}$.
(A)

(B)

9. State the domain and range of $y=f(x)$ and $y=\sqrt{f(x)}$ for the following:
(A) $f(x)=x^{2}+2$

(B) $f(x)=-x^{2}+3$

(C) $f(x)=8-2 x^{2}$

(D) $f(x)=2 x^{2}-5 x-3$

10. Solve graphically:
(A) $\sqrt{25-x^{2}}=4$

(B) $\sqrt{x^{2}-4}-5=-x$

