1. Which function best represents the graph shown below?

B)
$$y = \sqrt{-x} + 3$$

C)
$$y = -\sqrt{x} - 3$$

D)
$$y = -\sqrt{x} + 3$$

2. The graph of the function $y = \sqrt{x}$ is stretched horizontally by a factor of 3 and translated 4 units left. What is the domain of the transformed function?

A)
$$x \mid x \ge -4$$
, $x \in \mathbb{R}$

B)
$$x \mid x \ge -\frac{4}{3}, x \in \mathbb{R}$$

C)
$$x \mid x \le -3, x \in \mathbb{R}$$

D)
$$x \mid x \le -4, x \in R$$

3. If f(x) = 3x + 1, which point is on the graph of $y = \sqrt{f(x)}$?

- A) (0,0)
- B) (0,1)
- C) (1,0)
- D) (1,1)

4. Which function has a range of $y \mid y \ge 0$, $y \in \mathbb{R}$?

A)
$$y = -\sqrt{x-5}$$

B)
$$y = \sqrt{x} - 5$$

C)
$$y = \sqrt{-(x+5)}$$

D)
$$y = \sqrt{x} + 5$$

- 5. Write the radical function that results from applying each set of transformations to the graph $y = \sqrt{x}$.
- (A) vertical stretch by a factor of 3, reflection in x-axis, a translation of 4 units right and 2 units down.
- (B) vertical stretch by a factor of 3, horizontal stretch by a factor of $\frac{1}{2}$, reflection in x and y-axis, translation 6 units to the left.
- 6. State the mapping rule and sketch the graph of $y = -4\sqrt{x+3} 2$.

7. Sate all of the invariant points for the graph of $f(x) = 6x^2 - x$ and $y = \sqrt{f(x)}$?

8. Given the graph of y = f(x), sketch the graph of $y = \sqrt{f(x)}$.

(A)

(B)

9. State the domain and range of y = f(x) and $y = \sqrt{f(x)}$ for the following:

(A)
$$f(x) = x^2 + 2$$

(B)
$$f(x) = -x^2 + 3$$

(D)
$$f(x) = 2x^2 - 5x - 3$$

10. Solve graphically:

(A)
$$\sqrt{25-x^2} = 4$$

(B)
$$\sqrt{x^2 - 4} - 5 = -x$$

