Part A: Selected Response: Place the letter of the correct response in the space provided. (8 marks)

1. Which function best represents the graph shown below? \qquad
A) $y=-\sqrt{x}-4$
B) $y=-\sqrt{x}+4$
C) $y=\sqrt{-x}-4$
D) $y=\sqrt{-x}+4$

2. The graph of the function $y=\sqrt{x}$ is stretched horizontally by a factor of 4
3. \qquad and translated 2 units left. What is the domain of the transformed function?
A) $x \mid x \geq-2, x \varepsilon R$
(B) $x \mid x \leq-2, x \varepsilon R$
(C) $x \mid x \geq 2, x \varepsilon R$
(D) $x \mid x \leq 2, x \varepsilon R$
4. If $f(x)=x+1$, which point is on the graph of $y=\sqrt{f(x)}$? \qquad
(A) $(0,0)$
(B) $(0,1)$
(C) $(1,0)$
(D) $(1,1)$
5. Which function has a range of $y \mid y \leq 0, y \varepsilon R$?
6. \qquad
A) $y=-\sqrt{x-3}$
B) $y=\sqrt{-x}-3$
C) $y=\sqrt{-(x-3)}$
D) $y=-\sqrt{x}-3$
7. Which are all of the invariant points for the graphs of $f(x)=4 x^{2}+3 x$ \qquad and $y=\sqrt{f(x)}$?
A) $(1,1),\left(\frac{3}{4}, 0\right),(0,0),\left(-\frac{1}{4}, 1\right)$,
B) $(-1,1),\left(\frac{3}{4}, 0\right),(0,0),\left(-\frac{1}{4}, 1\right)$
C) $(1,1),\left(-\frac{3}{4}, 0\right),(0,0),\left(\frac{1}{4}, 1\right)$
D) $(-1,1),\left(-\frac{3}{4}, 0\right),(0,0),\left(\frac{1}{4}, 1\right)$
8. Which is the mapping rule that maps $y=\sqrt{x}$ onto $y=-4 \sqrt{x+3}-2$?
9. \qquad
A) $(x, y) \rightarrow(x-3,-4 y-2)$
B) $(x, y) \rightarrow\left(x-3,-\frac{1}{4} y+2\right)$
C) $(x, y) \rightarrow(x+3,-4 y-2)$
D) $(x, y) \rightarrow\left(x+3,-\frac{1}{4} y+2\right)$
10. If $y=\sqrt{x}$ is stretched horizontally by a factor of 4, which function results? \qquad
A) $y=\frac{1}{4} \sqrt{x}$
B) $y=4 \sqrt{x}$
C) $y=\sqrt{4 x}$
D) $y=\sqrt{\frac{1}{4} x}$
11. What is the domain for $f(x)=\sqrt{6-3 x}$?
12. \qquad
(A) $\{x \mid x \leq 2, x \in R\}$
(B) $\{\{x \mid x \geq 2, x \in R\}$
(C) $\{x \mid x \leq 3, x \in R\}$
(D) $\{x \mid x \geq 3, x \in R\}\}$

Part B: Constructed Response: Show workings to all problems.
/2 9. Write the radical function that results from applying the following set of transformations to the graph $y=\sqrt{x}$:
\checkmark vertical stretch by a factor of 5
\checkmark horizontal stretch by a factor of $\frac{1}{2}$
\checkmark reflection in x-axis
\checkmark translation 5 units to the right.
/5 10. (i) Write the mapping rule that maps $y=\sqrt{x}$ onto the function $y=3 \sqrt{-2(x-4)}+1$.
(ii) State the domain and range of the transformed function.
(iii) Sketch the graph on the grid provided, showing the image points for those shown on the graph of $y=\sqrt{x}$.

Mapping Rule: \qquad

Domain: \qquad
Range: \qquad

/5 11. The graph of $y=f(x)$ is shown. On the same grid, sketch the graph of the function $y=\sqrt{f(x)}$, including all invariant points. State the domain and range of $y=\sqrt{f(x)}$.

Domain: \qquad

/3 12. Determine the domain and range of $y=\sqrt{-2(x-1)^{2}+8}$. Show algebraic workings.
/4
13. Determine the approximate solution to each equation graphically $\sqrt{-2 x^{2}+9}=3-x$ Verify your answer algebraically.

