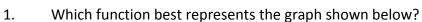
<u>Part A: Selected Response</u>: Place the letter of the correct response in the space provided. (8 marks)

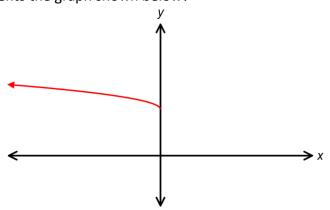


A)
$$y = -\sqrt{x} - 4$$

B)
$$y = -\sqrt{x} + 4$$

C)
$$y = \sqrt{-x} - 4$$

D)
$$y = \sqrt{-x} + 4$$



2. The graph of the function
$$y = \sqrt{x}$$
 is stretched horizontally by a factor of 4 2. ____ and translated 2 units left. What is the domain of the transformed function?

A)
$$x \mid x \ge -2, x \in \mathbb{R}$$

(B)
$$x \mid x \le -2, x \in \mathbb{R}$$

(C)
$$x \mid x \ge 2, x \in \mathbb{R}$$

(D)
$$x \mid x \le 2, x \in \mathbb{R}$$

3. If
$$f(x) = x + 1$$
, which point is on the graph of $y = \sqrt{f(x)}$?

4. Which function has a range of
$$y \mid y \le 0$$
, $y \in \mathbb{R}$?

A)
$$y = -\sqrt{x-3}$$

B)
$$y = \sqrt{-x} - 3$$

C)
$$y = \sqrt{-(x-3)}$$

D)
$$y = -\sqrt{x} - 3$$

5. Which are all of the invariant points for the graphs of
$$f(x) = 4x^2 + 3x$$
 5. and $y = \sqrt{f(x)}$?

A)
$$(1, 1), (\frac{3}{4}, 0), (0, 0), (-\frac{1}{4}, 1)$$
,

B)
$$(-1, 1), (\frac{3}{4}, 0), (0, 0), (-\frac{1}{4}, 1)$$

C)
$$(1, 1), (-\frac{3}{4}, 0), (0, 0), (\frac{1}{4}, 1)$$

D)
$$(-1, 1), (-\frac{3}{4}, 0), (0, 0), (\frac{1}{4}, 1)$$

- Which is the mapping rule that maps $y = \sqrt{x}$ onto $y = -4\sqrt{x+3} 2$?
- 6. ____

- A) $(x, y) \rightarrow (x-3, -4y-2)$
- B) $(x, y) \rightarrow (x-3, -\frac{1}{4}y+2)$
- C) $(x, y) \rightarrow (x+3, -4y-2)$
- D) $(x, y) \rightarrow (x+3, -\frac{1}{4}y+2)$
- If $y = \sqrt{x}$ is stretched horizontally by a factor of 4, which function results? 7. 7.____
- A) $y = \frac{1}{4} \sqrt{x}$
- B) $y = 4\sqrt{x}$
- C) $y = \sqrt{4x}$
- D) $y = \sqrt{\frac{1}{4}x}$
- What is the domain for $f(x) = \sqrt{6-3x}$? 8.

8.____

- (A) $\{x | x \le 2, x \in R\}$ (B) $\{\{x | x \ge 2, x \in R\}$
- (C) $\{x | x \le 3, x \in R\}$ (D) $\{x | x \ge 3, x \in R\}$

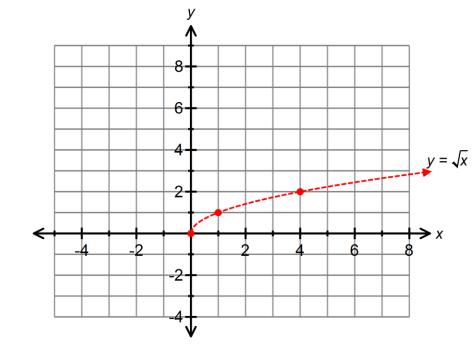
Part B: Constructed Response: Show workings to all problems.

- /2 9. Write the radical function that results from applying the following set of transformations to the graph $y = \sqrt{x}$:
 - ✓ vertical stretch by a factor of 5
 - ✓ horizontal stretch by a factor of $\frac{1}{2}$
 - ✓ reflection in x- axis
 - ✓ translation 5 units to the right.

/5 10. (i) Write the mapping rule that maps $y = \sqrt{x}$ onto the function $y = 3\sqrt{-2(x-4)} + 1$.

- (ii) State the domain and range of the transformed function.
- (iii) Sketch the graph on the grid provided, showing the image points for those shown on the graph of $y=\sqrt{x}$.

Mapping Rule: _____



Domain: _____

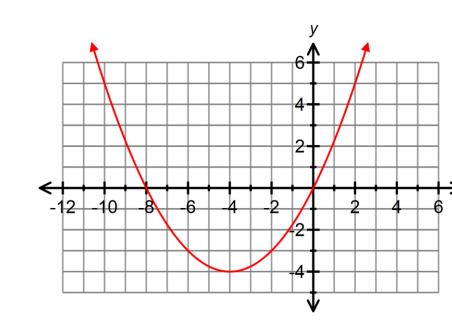
Range:

/5 11. The graph of y = f(x) is shown. On the same grid, sketch the graph of the function $y = \sqrt{f(x)}$, including all invariant points. State the domain and range of $y = \sqrt{f(x)}$.

Domain:

Range:

Invariant points:



/3 12. Determine the domain and range of $y = \sqrt{-2(x-1)^2 + 8}$. Show algebraic workings.

/4 13. Determine the approximate solution to each equation graphically $\sqrt{-2x^2+9}=3-x$ Verify your answer algebraically.

