Name:

Part A: Selected Response: Place the letter of the correct response in the space provided. (12 marks)

1. What is the period of $y=3 \cos \frac{1}{2}(x-\pi)$?
2. \qquad
(A) $\frac{\pi}{2}$
(B) π
(C) 4π
(D) 8π
3. What is the range of the function $y=\frac{1}{2} \cos 2\left(x-\frac{\pi}{4}\right)-3$?
4.

(A) $\{y \mid-5 \leq y \leq-1, y \in R\}$
(B) $\left\{y \left\lvert\,-\frac{7}{2} \leq y \leq-\frac{5}{2}\right., y \in R\right\}$
(C) $\{y \mid 1 \leq y \leq 5, y \in R\}$
(D) $\left\{y \left\lvert\, \frac{5}{2} \leq y \leq \frac{7}{2}\right., \quad y \in R\right\}$
3. What are the transformations of the graph $y=\sin (3 \theta-\pi)$? \qquad
(A) horizontal stretch by a factor of $\frac{1}{3}$ and a horizontal shift of $\frac{\pi}{3}$ units right
(B) horizontal stretch by a factor of $\frac{1}{3}$ and a horizontal shift of π units right
(C) horizontal stretch by a factor of 3 and a horizontal shift of $\frac{\pi}{3}$ units right
(D) horizontal stretch by a factor of 3 and a horizontal shift of π units right
4. Solve for x : $2 \sin \theta-\sqrt{3}=0$ where $0 \leq x \leq 2 \pi$. \qquad
(A) $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}$
(B) $\theta=\frac{\pi}{6}, \frac{11 \pi}{6}$
(C) $\theta=\frac{\pi}{3}, \frac{4 \pi}{3}$
(D) $\theta=\frac{\pi}{3}, \frac{2 \pi}{3}$
5. If the point $\left(\frac{\pi}{2},-2\right)$ lies on the graph of $y=a \cos \left(x-\frac{\pi}{4}\right)-4$, what is the value of a ?
5. \qquad
(A) $2 \sqrt{2}$
(B) $\frac{\sqrt{2}}{2}$
(C) 2
(D) $\sqrt{2}$
6. The range of a trigonometric function of the form $y=a \sin b(x-c)+d$ \qquad is $\{y \mid-2 \leq y \leq 8, y \in R\}$. What is the value of d ?
(A) 1
(B) 3
(C) 5
(D) 8
7. What is the maximum value of $y=2 \cos 4\left(x-\frac{\pi}{6}\right)-5$? \qquad
(A) -7
(B) -3
(C) 3
(D) 7
8. The partial graph of a trigonometric function is shown. The graph has a maximum value at $\left(\frac{\pi}{2}, 112\right)$ and a minimum value at $\left(\frac{3 \pi}{2}, 28\right)$.
Which equation can be used to represent this graph?
8. \qquad
(A) $y=70 \cos \left(x-\frac{\pi}{2}\right)+42$
(B) $y=42 \cos (x-2 \pi)+70$
(C) $y=42 \cos \left(x-\frac{\pi}{2}\right)+70$
(D) $y=70 \cos (x-2 \pi)+42$

9. Write the equation of the sine function if the amplitude is 3 and the period is $\frac{5 \pi}{6}$? \qquad
\qquad
(A) $y=3 \sin \frac{5 \pi}{6} x$
(B) $y=3 \sin \frac{6}{5 \pi} x$
(C) $y=3 \sin \frac{5}{12} x$
(D) $y=3 \sin \frac{12}{5} x$
10. What is the domain of $y=\tan \theta$?
10. \qquad
(A) $x \left\lvert\, x \neq \frac{\pi}{4}+\pi k\right., k \in I$
(B) $x \left\lvert\, x \neq \frac{\pi}{4}+2 \pi k\right., k \in I$
(C) $x \left\lvert\, x \neq \frac{\pi}{2}+\pi k\right., k \in I$
(D) $x \left\lvert\, x \neq \frac{\pi}{2}+2 \pi k\right., k \in I$
11. A Ferris wheel with a radius of 6 m rotates once every 30 seconds.

Passengers get on board at a point 1 m above the ground at the bottom of the Ferris wheel. Which function models this situation? \qquad
(A) $y=-6 \cos \frac{\pi}{15} x+7$
(B) $y=-6 \cos \frac{15}{\pi} x+7$
(C) $y=-\frac{1}{6} \cos \frac{\pi}{15} x+7$
(D) $y=-\frac{1}{6} \cos \frac{15}{\pi} x+7$

12. Given the graph below, what is the solution for $2 \cos 4 x=-1$
where $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$? \qquad
(A) $x= \pm \frac{\pi}{3}, \pm \frac{\pi}{6}, \frac{2 \pi}{3}, \frac{5 \pi}{6}$
(B) $x= \pm \frac{\pi}{2}, 0$
(C) $x= \pm \frac{\pi}{3}, \pm \frac{\pi}{6}$
(D) $x= \pm \frac{\pi}{2}, 0, \pi$

Part B: Constructed Response: Show workings to all problems.
14 13. Write the equation for the graph shown in the form $y=a \sin b(x-c)+d$ and in the form $y=a \cos b(x-c)+d$.

Sine graph: \qquad

Cosine graph: \qquad
14. Determine all solutions, in radian measure, for the equation $\sin \left[\frac{1}{2}\left(\theta-\frac{\pi}{2}\right)\right]=-\frac{\sqrt{3}}{2}$

Solutions: \qquad
/5 15. Sketch the graph of the function $y=4 \sin 2\left(x-\frac{\pi}{3}\right)+1$.
State the domain and the range.

