Mathematics 3200

Unit 4: Trigonometry and the Unit Circle

In-Class Sample

Name: \qquad

Part A: Selected Response: Place the letter of the correct response in the space provided.

1. In which quadrant is $\sec >0$ and $\sin <0$?
(A) I
(B) II
(C) III
(D) IV
2. What is 460° in radian measure?
3.

(A) $\frac{9 \pi}{23}$
(B) $\frac{23 \pi}{18}$
(C) $\frac{23 \pi}{9}$
(D) $\frac{18 \pi}{23}$
3. What is the length of the arc cut by a 240° in a circle having diameter 10 cm ?
3. \qquad
(A) $\frac{10 \pi}{3}$
(B) $\frac{20 \pi}{3}$
(C) $\frac{30 \pi}{3}$

(D) $\frac{40 \pi}{3}$
4. What is the smallest positive angle that has the same terminal arm
4. as $-\frac{5 \pi}{3}$?
(A) $-\frac{\pi}{3}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{6}$
(D) $\frac{5 \pi}{3}$
5. The point $P\left(-\frac{1}{3}, y\right)$ is on the unit circle and the terminal arm is in the $2^{\text {nd }}$ quadrant.
5. What is the exact value of the missing co-ordinate?
(A) $\frac{\sqrt{10}}{3}$
(B) $\frac{2 \sqrt{2}}{3}$
(C) $-\frac{\sqrt{10}}{3}$
(D) $-\frac{2 \sqrt{2}}{3}$
6. What is the measure of the central angle if $P(\theta)=\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$?
6. \qquad
(A) $\frac{5 \pi}{6}$
(B) $\frac{7 \pi}{6}$
(C) $\frac{4 \pi}{3}$
(D) $\frac{2 \pi}{3}$
7. If $\cot \theta=0.6$, what is one approximate measure in radians for θ ?
7. \qquad
(A) 1.03
(B) 0.54
(C) 0.64
(D) 1.88
8. Which exact measures of θ satisfy $\sin \theta=0$ where $-360^{\circ} \leq \theta<360^{\circ}$?
8. \qquad
(A) $\theta=-360^{\circ},-180^{\circ}, 0^{\circ}, 180^{\circ}, 360^{\circ}$
(B) $\theta=-180^{\circ}, 0^{\circ}, 180^{\circ}, 360^{\circ}$
(C) $\theta=-360^{\circ},-180^{\circ}, 0^{\circ}, 180^{\circ}$
(D) $\theta=-360^{\circ},-180^{\circ}, 180^{\circ}$
9. What is the exact value of $\tan \left(-\frac{7 \pi}{3}\right)$
9.
(A) $-\frac{\sqrt{3}}{2}$
(B) $-\sqrt{3}$
(C) $\frac{\sqrt{3}}{3}$
(D) $\sqrt{3}$
10. Solve for $x: \cos x=\frac{\sqrt{3}}{2}$
10.
(A) $x=\frac{\pi}{6}+2 \pi k, k \varepsilon I$
$x=\frac{11 \pi}{6}+2 \pi k, k \varepsilon I$
(B)
$x=\frac{5 \pi}{6}+2 \pi k, k \varepsilon I$
$x=\frac{7 \pi}{6}+2 \pi k, k \varepsilon I$
(C)
$x=\frac{2 \pi}{3}+2 \pi k, k \varepsilon I$
$x=\frac{\pi}{3}+2 \pi k, k \varepsilon I$
$x=\frac{4 \pi}{3}+2 \pi k, k \varepsilon I$
(D) $x=\frac{5 \pi}{3}+2 \pi k, k \varepsilon I$
11. On the unit circle, how many radians would the point $(-1,0)$ pass if rotated
11. \qquad counterclockwise until it first reaches $\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$.
(A) $\frac{11 \pi}{6}$
(B) $\frac{2 \pi}{3}$
(C) $\frac{5 \pi}{6}$
(D) $\frac{5 \pi}{3}$

Part B: Constructed Response: Show workings to receive full marks.
12. Determine the exact value of: $\cos \left(\frac{\pi}{4}\right)+\sin ^{2}\left(-\frac{2 \pi}{3}\right) \tan \left(\frac{\pi}{3}\right)$
13. Determine the exact value of : $\frac{\csc \left(\frac{5 \pi}{3}\right)+\cot \left(\frac{7 \pi}{6}\right)}{\sin \left(-150^{\circ}\right)}$
14. Determine the approximate measure of the angles that satisfy the following:

$$
\sin \theta=0.54 \text { where }-2 \pi<\theta \leq \pi
$$

15. Write the general solution for $\tan ^{2} \theta=4 \tan \theta$ in radian measure.
16. Write the general solution for $3 \sec ^{2} \theta-\sec \theta-4=0$ in degree measure.
