1. Which of the following represents the graph of $y=2 \sqrt{-x+3}-4$?
A)

B)

C)

D)

2. Given that $f(x)=\sqrt{x}$ has been stretched horizontally by a factor of $\frac{1}{2}$, reflected across the x-axis, moved left 3 units, and moved up 1 unit, which of the following equations represents the transformed image?
A) $g(x)=-\sqrt{\frac{1}{2}(x+3)}+1$
B) $g(x)=-\sqrt{2(x-3)}-1$
C) $g(x)=-\sqrt{2(x+3)}+1$
D) $g(x)=-\sqrt{2(x-3)}+1$
3. Given $f(x)=\sqrt{x}$, which of the following graphs represents a transformation $y=a \sqrt{b(x-h)}+k$ for $a<0, b<0, h<0$ and $k>0$?
A)

B)

C)

D)

4. What are the domain and range for $y-4=-\sqrt{\frac{1}{2} x-4}$?
$D:\{x \mid x \geq 4, x \in R\}$
$R:\{y \mid y \geq 4, y \in R\}$
B) $\begin{aligned} & D:\{x \mid x \geq 4, x \in R\} \\ & R\end{aligned}$
C) $D:\{x \mid x \geq 8, x \in R\}$
D) $D:\{x \mid x \leq 8, x \in R\}$
$R:\{y \mid y \leq 4, y \in R\}$
D) $R:\{y \mid y \geq 4, y \in R\}$
5. The graph of $y=\sqrt{f(x)}$ is shown in the graph. Which of the following equations could represent the equation for $y=f(x)$?
A) $f(x)=x^{2}+4$
B) $f(x)=x^{2}-4$
C) $f(x)=-x^{2}+4$

D) $f(x)=-x^{2}-4$
6. Which function has a range of $y \mid y \leq 0, y \varepsilon R$?
A) $y=-\sqrt{x-3}$
B) $y=\sqrt{-x}-3$
C) $y=\sqrt{-(x-3)}$
D) $y=-\sqrt{x}-3$
7. Which set of transformations would map $y=\sqrt{x}$ onto $y=-\sqrt{4(x+2)}+3$?
A) Reflection in the x-axis, horizontal stretch by a factor of 4 , translation of 2 units right and 3 units down.
B) Reflection in the x-axis, horizontal stretch by a factor of $1 / 4$, translation of 2 units left and 3 units up.
C) Reflection in the y-axis, horizontal stretch by a factor of 4 , translation of 2 units right and 3 units down.
D) Reflection in the y-axis, horizontal stretch by a factor of $1 / 4$, translation of 2 units left and 3 units up
8. Which function best represents the graph shown below?
A) $y=\sqrt{-(x-2)}$
B) $y=\sqrt{-x}-2$
C) $y=-\sqrt{(x-2)}$
D) $y=-\sqrt{x}-2$

9. Which mapping rule would map $y=\sqrt{x}$ onto $-\frac{1}{3}(y+2)=\sqrt{2 x+6}$?
A) $(x, y) \rightarrow\left(\frac{1}{2} x-6,-3 y-2\right)$
B) $(x, y) \rightarrow\left(\frac{1}{2} x-3,-3 y-2\right)$
C) $(x, y) \rightarrow\left(2 x-6,-\frac{1}{3} y+2\right)$
D) $(x, y) \rightarrow\left(2 x-3,-\frac{1}{3} y+2\right)$
10. Use the graph provided to solve the equation, $\sqrt{3 x+6}=x+2$.
A) $x=0$ and $x=3$
B) $x=1$
C) $(0,-2)$ and $(1,3)$
D) $\quad x=-2$ and $x=1$

11. State the invariant points for the graph of $f(x)=6 x^{2}-x$ and $y=\sqrt{f(x)}$?
12. State the domain of $f(x)=\sqrt{3-12 x}$.
13. The graph of $y=f(x)$ is shown.

a) On the same grid, sketch the graph of the function $y=\sqrt{f(x)}$ including all invariant points.
b) State the domain and range of $y=\sqrt{f(x)}$.
c) State where the function $y=\sqrt{f(x)}$ is undefined and justify your reasoning.
14. Algebraically determine the domain and range of $y=\sqrt{-2 x^{2}-8 x+24}$

Answers:

1. C
2. C
3. B
4. C
5. B
6. A
7. B
8. A
9. B
10. D
11. $(0,0),\left(\frac{1}{6}, 0\right),\left(-\frac{1}{3}, 1\right),\left(\frac{1}{2}, 1\right)$
12. $x \left\lvert\, x \leq \frac{1}{4} x \varepsilon R\right.$
13.

a) Invariant points $(2,0),(10,0),(1,1),(11,1)$
b) Domain of $y=\sqrt{f(x)}: x \geq 10, x \leq 2, x \in R$

Range of $y=\sqrt{f(x)}: y \geq 0, y \in R$
c) $y=\sqrt{f(x)}$ is undefined $2<x<10, x \in R$ (or $(2,10))$ since the y-values of the function is negative and the square root of a negative number is undefined.
14.

x-intercepts of $y=f(x)$ are $\mathrm{x}=-6$ and $\mathrm{x}=2$
Vertex of $y=f(x)$ is $(-2,32)$

Vertex of $y=\sqrt{f(x)}$ is $(-2, \sqrt{32})$

Domain of $y=\sqrt{f(x)}:[-6,2]$
Range of $y=\sqrt{f(x)}:[0, \sqrt{32}]$

