1. Which of the following represents the equation of $y=f(x)$ after it has been shifted 2 units to the right and 1 unit down?
A) $y=f(x-2)-1$
B) $y=f(x-2)+1$
C) $y=f(x+2)+1$
D) $y=f(x+2)-1$
2. The graph of $y=f(x)$ has been reflected across the y-axis and stretched vertically by a factor of $\frac{1}{2}$. Which of the equations would describe the new graph?
A) $y=-f(2 x)$
B) $y=2 f(-x)$
C) $y=-\frac{1}{2} f(x)$
D) $y=\frac{1}{2} f(-x)$
3. The graph of $y=f(x)$ has a domain of $-2 \leq x \leq 6$ and a range of $0 \leq y \leq 10$. Which of the following would best describe the domain and range for $y=-f(2 x)+1$?
A) $D:-2 \leq x \leq 6$
$R:-9 \leq y \leq 1$
B) $\begin{aligned} & D:-6 \leq x \leq 2 \\ & R: 1 \leq y \leq 11\end{aligned}$
C) $D:-1 \leq x \leq 3$
D) $D:-3 \leq x \leq 1$
$R:-9 \leq y \leq 1$
$R: 1 \leq y \leq 11$
4. Which equation best describes the transformations that have been applied to $y=f(x)$ as shown in the graph?
A) $y=3 f\left(\frac{1}{2} x\right)-8$
B) $y=3 f(2 x)-8$
C) $y=\frac{1}{3} f(2 x)+8$
D) $y=\frac{1}{3} f\left(\frac{1}{2} x\right)+8$

5. The graph of a function has a point with coordinates $(a,-b)$. If the graph has been reflected about the x-axis, horizontally stretched about the y-axis by a factor of 2 and translated 5 units down, what would the coordinates of the image point be?
A) $(a, 2 b-5)$
B) $(2 a, b-5)$
C) $(-2 a, b-5)$
D) $(-a, 2 b-5)$
6. Given the point $(0,5)$ is on a graph. For which of the following transformations would it remain an invariant point?
A) reflection in the x-axis, vertical stretch
B) reflection in the y-axis, horizontal stretch
C) horizontal translation
D) vertical translation
7. What is the mapping rule for $y=-f\left(\frac{2}{3} x+4\right)-3$?
A) $(x, y) \rightarrow\left(\frac{2}{3} x-4,-y+3\right)$
B) $(x, y) \rightarrow\left(\frac{3}{2} x-4,-y+3\right)$
C) $(x, y) \rightarrow\left(\frac{2}{3} x+6,-y-3\right)$
D) $(x, y) \rightarrow\left(\frac{3}{2} x-6,-y-3\right)$
8. For the graph of $y=f(x)$ shown, which of the following statements is not true?
A) $(0,4)$ will be an invariant point for $y=f(-x)$
B) $(2,2)$ will be an invariant point for $y=f^{-1}(x)$
C) $(0,4)$ will be an invariant point for $y=-f(x)$
D) There are no invariant points for $y=-f(x)$

9. What is the equation for the image graph of $y=f(x)$ as shown?
A) $y=f(x-4)+3$
B) $y=f(x+4)+3$
C) $y=f(x+4)-3$
D) $y=f(x-4)-3$

10. If a function has a point with coordinates $(a,-b)$, what are the coordinates of a point on the graph of $y=f^{-1}(x)$?
A) $(a,-b)$
B) $(b,-a)$
C) $(-b, a)$
D) $(-a, b)$
11. Which of the graphs shown is the graph of a function which will have an inverse that is a function?
A)

B)

C)

D)

12. Given $y=f(x)$ has been transformed by a reflection in the x -axis, a horizontal stretch of 4 , a horizontal translation of 1 unit left and a vertical translation of 2 units up, what is the new equation for the image graph?
A) $y=-f(4 x+1)+2$
B) $y=f(-4(x-1))+2$
C) $y=-f\left(\frac{1}{4}(x+1)\right)+2$
D) $y=f\left(-\frac{1}{4} x+1\right)+2$
13. Given the graph $y=f(x)$ shown, sketch the graph for each of the following and state any invariant points
i) $y=2 f(-3(x+1))-2$

ii) $y=f^{-1}(x)$

14. Determine the equation for the image of $y=f(x)$.
A)

B)

15. Algebraically determine the inverse of $f(x)=(x+1)^{2}+4$.

State the restricted domain for the relation so that the inverse is a function.
16. The graph of $y=f(x)$ is transformed to produce the graph of $y=-5 f(2 x-6)-1$. What is the horizontal translation? If the point $(-4,10)$ lies on the graph of $f(x)$ what is the image point on the graph of $y=-5 f(2 x-6)-1$.
17. Explain how the transformations described by $y=f\left(\frac{1}{2} x+1\right)$ and $y=f\left(\frac{1}{2}(x+1)\right)$ are similar and how are they different.

Answers:

1. A 2. D
2. C
3. B
4. B
5. B
6. D
7. C
8. D
9. C 11.B
10. C
11. new graph should have key points
A) i) $\left(\frac{5}{3},-12\right),\left(\frac{1}{3}, 8\right),\left(-\frac{8}{3},-2\right)$ and $(-4,16)$
ii) $(-5,-8),(5,-4),(0,5)$ and $(9,9)$
B) i) no invariant points ii) $(2,2)(9,9)$
12. A) $g(x)=-f(2 x)$ B) $y=-2 f(x-3)+2$
13. $y=-1+\sqrt{x-4}, \quad x \geq-1$ or $y=-1-\sqrt{x-4}, \quad x \leq-1$
14. $y=-5 f(2(x-3))-1 \quad \mathrm{HT}=3$ right, $\quad(-4,10) \rightarrow(1,-51)$
15. $y=f\left(\frac{1}{2}(x+2) \mathrm{HT}=-2\right.$
$y=f\left(\frac{1}{2}(x+1) \quad \mathrm{HT}=-1\right.$
Both functions have the same horizontal stretch of $\frac{1}{2}$ but different horizontal translations.
