1. Convert 160° to radians.

A $\frac{9 \pi}{16}$
B $\frac{9 \pi}{8}$
C $\frac{8 \pi}{9}$
D $\frac{5 \pi}{6}$
2. If θ is a standard position angle measuring 8 rad , in which quadrant does the terminal arm of θ lie?

A Quadrant I
B Quadrant II
C Quadrant III
D Quadrant IV
3. Which best approximates the value of $\cot \left(200^{\circ}\right)+\csc (3)$?

A 0.3273
B 1.7374
C 9.8336
D 21.8548
4. If $\cot (\theta)<0$ and $\sec (\theta)>0$, in which quadrant does the terminal arm of angle θ lie?

A Quadrant I
B Quadrant II
C Quadrant III
D Quadrant IV
5. Solve: $\csc (x)+2=0$, where $0 \leq x \leq \pi$

A $\quad x=\frac{\pi}{3}$
B $\quad x=\frac{\pi}{6}$

C $\quad x=\frac{\pi}{3}, x=\frac{2 \pi}{3}$
D $x=\frac{\pi}{6}, x=\frac{5 \pi}{6}$
6. If β is an angle in standard position with $\csc (\beta)=-\frac{25}{7}$ and $\tan (\beta)>0$, which is true for $\sec (\beta)$ and the measure of β ?

A $\quad \sec (\beta)=-\frac{25}{24}, \quad \beta=196^{\circ}$
B $\quad \sec (\beta)=\frac{25}{24}, \quad \beta=16^{\circ}$
C $\quad \sec (\beta)=-\frac{25}{24}, \quad \beta=344^{\circ}$
D $\quad \sec (\beta)=\frac{25}{24}, \quad \beta=164^{\circ}$
7. Solve: $\csc ^{2}(\alpha)=1$, where $\alpha \in[0,2 \pi)$

A $\quad \alpha=\frac{\pi}{2}$
B $\quad \alpha=\frac{\pi}{2}, \alpha=\frac{3 \pi}{2}$
C $\quad \alpha=0$
D $\quad \alpha=0, \alpha=\pi$
8. A circle centered at the origin contains the point $(-12,16)$. What is the equation of this circle?

A $\quad x^{2}+y^{2}=16$
B $\quad x^{2}+y^{2}=20$
C $x^{2}+y^{2}=40$
D $\quad x^{2}+y^{2}=400$
9. What is the length of the arc intercepted by a central angle of 100° in a circle with radius 4.6 cm ?

A $\quad 1.28 \mathrm{~cm}$
B $\quad 4.01 \mathrm{~cm}$
C $\quad 6.92 \mathrm{~cm}$
D $\quad 8.03 \mathrm{~cm}$
10. Which pair of angles is coterminal?

A $\frac{5 \pi}{3}$ and $-\frac{5 \pi}{3}$
B $\quad-\frac{\pi}{3}$ and $\frac{2 \pi}{3}$
C $\frac{5 \pi}{6}$ and $-\frac{7 \pi}{6}$
D $\frac{2 \pi}{3}$ and $\frac{4 \pi}{3}$
11. What is the exact value of $\tan \left(30^{\circ}\right)+\cot \left(30^{\circ}\right)$

A 1
B $\frac{4 \sqrt{3}}{3}$
C $\frac{2 \sqrt{3}}{3}$
D $\sqrt{3}$
12. Which represents an angle measuring $\frac{7 \pi}{6} \quad$?
A

B

C

D

13. Which of the following points lies on the unit circle?

A $\left(\frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2}\right)$
B $\left(\frac{1}{2}, \frac{1}{2}\right)$
C $\left(\frac{3}{5},-\frac{4}{5}\right)$
D $\left(\frac{2}{3}, \frac{1}{3}\right)$
14. The point $(-4,8)$ lies on the terminal arm of an angle, θ, in standard position. Sketch the angle in standard positon. Determine the exact value, in simplest radical form, for all six trigonometric ratios of θ. Calculate the measure of the reference angle, and determine the measure of θ.
15. Determine the exact value, in simplest form, for each of the following:
a) $\frac{\sin \left(-\frac{4 \pi}{3}\right)+\sec \left(\frac{\pi}{4}\right)}{\tan \left(-120^{\circ}\right)}$
b) $\frac{\cos \left(\frac{5 \pi}{6}\right)+\sin \left(240^{\circ}\right)}{\csc \left(\frac{\pi}{3}\right) \sin \left(\frac{11 \pi}{6}\right)}$
16. Determine the general solution to the equation below, where x is in degrees.
A) $6 \tan ^{2}(x)-\tan (x)-15=0$
B) $2 \sin ^{2} x+5 \sin x+3=0$

Determine the general solution to the equation below, where x is in radians
C) $\sec ^{2} x-2 \sec x-3=0$
D) $(\tan x-1)(\tan x-\sqrt{3)}=0$
17. A) Solve for x, where $-\pi \leq x<2 \pi$

$$
\begin{aligned}
& \sec ^{2}(x)=3 \sec (x)-2 \\
& \sec ^{2} \theta-4=0 \\
& \cot ^{2} \theta=4 \cot \theta \\
& 3 \csc x-5=4 \csc x-7
\end{aligned}
$$

C) Solve for θ, where $\theta \in[0,2 \pi]$
18. On a circle (centre O) with radius 6 cm , two points are described as follows:

Point A is determined by rotating the point $(6,0)$ through an angle of 3 radians.
Point B is determined by rotating the point $(0,-6)$ through an angle of -210°.
What is the length of the longer arc joining A and B ?

