Mathematics 3200

1. Convert 160° to radians.

A	$\frac{9\pi}{16}$
В	$\frac{9\pi}{8}$
С	$\frac{8\pi}{9}$
D	$\frac{5\pi}{6}$

- 2. If θ is a standard position angle measuring 8 rad, in which quadrant does the terminal arm of θ lie?
 - A Quadrant I
 - B Quadrant II
 - C Quadrant III
 - D Quadrant IV
- 3. Which best approximates the value of $\cot(200^\circ) + \csc(3)$?
 - A 0.3273
 - B 1.7374
 - C 9.8336
 - D 21.8548
- 4. If $\cot(\theta) < 0$ and $sec(\theta) > 0$, in which quadrant does the terminal arm of angle θ lie?
 - A Quadrant I
 - B Quadrant II
 - C Quadrant III
 - D Quadrant IV

5. Solve: csc(x) + 2 = 0, where $0 \le x \le \pi$

A $x = \frac{\pi}{3}$ B $x = \frac{\pi}{6}$ C $x = \frac{\pi}{3}, x = \frac{2\pi}{3}$ D $x = \frac{\pi}{6}, x = \frac{5\pi}{6}$

- 6. If β is an angle in standard position with $\csc(\beta) = -\frac{25}{7}$ and $tan(\beta) > 0$, which is true for $\sec(\beta)$ and the measure of β ?
 - ^A $\sec(\beta) = -\frac{25}{24}, \quad \beta = 196^{\circ}$
 - B $\operatorname{sec}(\beta) = \frac{25}{24}, \quad \beta = 16^{\circ}$

C
$$\operatorname{sec}(\beta) = -\frac{25}{24}, \quad \beta = 344^{\circ}$$

D
$$\operatorname{sec}(\beta) = \frac{25}{24}, \quad \beta = 164^{\circ}$$

7. Solve: $\csc^2(\alpha) = 1$, where $\alpha \in [0, 2\pi)$

A $\alpha = \frac{\pi}{2}$ B $\alpha = \frac{\pi}{2}, \alpha = \frac{3\pi}{2}$ C $\alpha = 0$ D $\alpha = 0, \alpha = \pi$

- 8. A circle centered at the origin contains the point (-12, 16). What is the equation of this circle?
 - A $x^{2} + y^{2} = 16$ B $x^{2} + y^{2} = 20$ C $x^{2} + y^{2} = 40$ D $x^{2} + y^{2} = 400$
- 9. What is the length of the arc intercepted by a central angle of 100° in a circle with radius 4.6 cm?
 - A 1.28 cm
 - B 4.01 cm
 - C 6.92 cm
 - D 8.03 cm
- 10. Which pair of angles is coterminal?
 - A $\frac{5\pi}{3}$ and $-\frac{5\pi}{3}$ B $-\frac{\pi}{3}$ and $\frac{2\pi}{3}$ C $\frac{5\pi}{6}$ and $-\frac{7\pi}{6}$ D $\frac{2\pi}{3}$ and $\frac{4\pi}{3}$
- 11. What is the exact value of $tan(30^\circ) + cot(30^\circ)$
 - A 1 B $\frac{4\sqrt{3}}{3}$ C $\frac{2\sqrt{3}}{3}$ D $\sqrt{3}$

Which represents an angle measuring 12.

?

Which of the following points lies on the unit circle? 13.

A
$$\left(\frac{\sqrt{3}}{2}, -\frac{\sqrt{3}}{2}\right)$$

B $\left(\frac{1}{2}, \frac{1}{2}\right)$
C $\left(\frac{3}{5}, -\frac{4}{5}\right)$
D $\left(\frac{2}{3}, \frac{1}{3}\right)$

•

- 14. The point (-4, 8) lies on the terminal arm of an angle, θ , in standard position. Sketch the angle in standard positon. Determine the exact value, in simplest radical form, for all six trigonometric ratios of θ . Calculate the measure of the reference angle, and determine the measure of θ .
- 15. Determine the exact value, in simplest form, for each of the following:

a)
$$\frac{\sin(-\frac{4\pi}{3}) + \sec(\frac{\pi}{4})}{\tan(-120^{\circ})}$$

b)
$$\frac{\cos(\frac{5\pi}{6}) + \sin(240^{\circ})}{\csc(\frac{\pi}{3})\sin(\frac{11\pi}{6})}$$

- 16. Determine the general solution to the equation below, where x is in degrees.
 - A) $6tan^2(x) tan(x) 15 = 0$ B) $2sin^2 x + 5sin x + 3 = 0$

Determine the general solution to the equation below, where x is in radians C) $\sec^2 x - 2\sec x - 3 = 0$ D) $(\tan x - 1)(\tan x - \sqrt{3}) = 0$

17.	A) Solve for <i>x</i> , where $-\pi \le x < 2\pi$	$sec^2(x) = 3sec(x) - 2$
	B) Solve for θ , where $\theta \in [-180^{\circ}, 180^{\circ})$	$\sec^2 \theta - 4 = 0$
	C) Solve for θ , where $\theta \in [0, 2\pi]$	$\cot^2 \theta = 4 \cot \theta$
	D) Solve for x, where $x \in [-360^\circ, 180^\circ]$	$3\csc x - 5 = 4\csc x - 7$

18. On a circle (centre O) with radius 6 cm, two points are described as follows:
Point A is determined by rotating the point (6,0) through an angle of 3 radians.
Point B is determined by rotating the point (0, -6) through an angle of -210°.
What is the length of the longer arc joining A and B?

